2024 Annual Drinking Water Quality Report

WARRIOR RIVER WATER AUTHORITY PWSID AL0000763

8900 Lock 17 Road

Bessemer, Alabama 35023

Phone (205) 491-7721 Fax (205) 491-7738

The Warrior River Water Authority is governed by a Board of Directors. Board Members are: Butch Wilson, Chuck Vickers, Kent Byram, Darrin Holmes and Trent Postell. The day-to-day operations of the Authority are overseen by General Manager, Danny Johnson and Assistant General Manager, Scott Jennings.

Board meetings are held the first Tuesday of each month at the Warrior River Water Authority's office, located at 8900 Lock 17 Road, at 6:30 pm unless otherwise posted.

Is my water safe?

Last year, as in years past, your tap water met U.S. Environmental Protection Agency (EPA) and state drinking water health standards. WRWA was recognized as one of the outstanding water filtration plants in Alabama by receiving the Optimization Award for the third year in a row. The Warrior River Water Authority safeguards its water treatment and distribution system, however during an abnormally hot, dry period the September, 2024 TTHM maximum contaminant level (MCL) was exceeded for 1 (one) location. The MCL is 0.080 mg/l and 1 (one) location measured 0.081 mg/l, WRWA has since taken steps necessary to address this issue and subsequent sampling indicates the TTHM level is once again below the MCL. Additionally, the lab utilized for sampling/testing failed to collect a sample for 2,4-D within the required monitoring period resulting in a monitoring violation. The sample was subsequently collected and tested with results indicating a level well below the MCL.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800) 426-4781

Where does my water come from?

The Warrior River Water Authority is comprised of groundwater, (wells), and surface water which is taken from the Warrior River. We have 2 wells producing from the Fort Payne/Tuscumbia Aquifer that supply water to part of the McCalla area. The Warrior River Water Filter Plant supplies water to the rest of the service area from the Mulberry Fork of the Warrior River. The groundwater (wells) are treated with chlorine as well as phosphate and monitored continuously. The surface water is treated with a coagulant, bleach, chlorine dioxide, caustic soda, fluoride, algaecide and phosphate then settled and filtered. The Warrior River Water Authority has an inter-connection agreement with the Bessemer Water System for emergency situations.

Source Water Assessment

The Warrior River Water Authority has developed a Source Water Assessment plan that will assist in protecting our water sources from contamination. It includes a susceptibility analysis which classifies potential contaminants as high, moderate, or non-susceptible. The assessment has been performed and approved by ADEM. <u>All potential contamination sites in our assessment area were classified as low susceptibility to contaminating our water source</u>. A copy of this report may be obtained by written request for a nominal fee. Please help us make this effort worthwhile by protecting our source water. Carefully follow instructions on pesticides and herbicides, and properly dispose of household chemicals, paints, and waste oil.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, can be naturally-occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. Radioactive contaminants can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Educational Statement for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Warrior River Water Authority is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Based on a study conducted by the Alabama Department of Environmental Management with the approval of the EPA a statewide waiver for the monitoring of Asbestos and Dioxin was issued. Thus, monitoring for any of these contaminants was not required.

Important Drinking Water Terms

MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbes

MRDL: Maximum residual disinfectant level. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

AL: Action Level. The concentration of a contaminant that triggers treatment or other requirements a water system shall follow.

For more information

Warrior River Water Attn: Todd Hicks 523 Belcher Ferry Rd Bessemer, Al 35023 Phone: 205-436-3532 Fax: 205-491-7738

For on-line payments, frequently asked questions, or to check your account, go to:

www.warriorriverwater.com

Table of Primary Drinking Water Contaminants

The table below lists all of the drinking water contaminants that were tested for during the calendar year of this report. **Contaminants included in this table were not necessarily found in your drinking water**. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

			Amount	Major		
Contaminants (units)	MCLG	MCL	Detected	Sources		
BACTERIOLOGICAL						
Total Coliform Bacteria	0	<5%	0	Human and animal fecal waste.		
Turbidity	NA	TT	0.25	Soil runoff.		
Fecal Coliform and E. Coli	0	0	0	Human and animal fecal waste.		
i. E. coli	0	TT	0	Human and animal fecal waste.		
ii. Enterococci	None	TT		Human and animal fecal waste.		
iii. Coliphage	None	TT		Human and animal fecal waste.		
GWR TT Violations	None	TT	0	Human and animal fecal waste.		
RADIOLOGICAL						
Beta/photon emitters	0	4		Decay of natural and man-made deposits		
(mrem/yr)						
Alpha emitters (pCi/l)	0	15	1.0+/-0.8	Erosion of natural deposits.		
Combined radium (pCi/l)	0	5	0.0+/-0.7	Erosion of natural deposits.		
Uranium	0	30 pCi/L		Erosion of natural deposits.		
INORGANIC CHEMICALS						
Viruses, Giardia	0	TT		Human and animal fecal waste.		
Legionella	0	TT		Found naturally in water, multiplies in heating systems		
Antimony	6 ppb	6 ppb	0.0025	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder.		
Arsenic	0	10 ppb	< 0.0010	Erosion of natural deposits;Ronoff from orchards;Runoff from glass and electronic production		
Asbestos (MFL)	7	7		Decay of asbestos cement water mains;Erosion of natural deposits.		
Barium	2	2 ppm	0.025	Discharge of drilling wastes and metal refineries; Erosion of natural deposits.		
Beryllium	4 ppb	4 ppb	<0.00010	Discharge from metal and coal-burning refineries, electrical, aerospace, defense industries		
Bromate	NA	10 ppb	< 0.50	By-product of drinking water chlorination		
Cadmium	5 ppb	5 ppb	< 0.0010	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries;		
				Runoff from waste batteries and paints.		
Chloramines	NA	4 ppm		Water additive used to control microbes.		
Chlorine	NA	4 ppm	3.6	Water additive used to control microbes.		
Chlorine Dioxide	NA	800 ppb	490	Water additive used to control microbes.		
Chlorite	NA	1 ppm	0.69	By-product of drinking water chlorination		
Chromium	100 ppb	100 ppb	< 0.0050	Discharge from steel and pulp mills; Erosion of natural deposits.		
Copper	1.3	AL=1.3 ppm	0.17	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from		
				wood deposits.		
Cyanide	200 ppb	200 ppb	< 0.010	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories.		
Fluoride	4	4 ppm	0.66	Water additive which promotes strong teeth; Erosion of natural deposits; Discharge from		
				fertilizer and aluminum factories.		
Lead	0	AL=15 ppb	< 0.0010	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from		
Magnesium			10.4			
Mercury	2 ppb	2 ppb	< 0.00020	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills;		
				Runoff from crop land.		
Nickel			< 0.0050			
Nitrate	10	10 ppm	0.088	Runoff from fertilizer use;Leaching from septic tank sewage;Erosion of natural deposits.		
Nitrite	1	1 ppm	0.11	Runoff from fertilizer use;Leaching from septic tank sewage;Erosion of natural deposits.		
Total Nitrate and Nitrite	NA	10 ppm	0.4			
Selenium	50 ppb	50 ppb	< 0.0010	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge		
				from mines.		
Thallium	0.5 ppb	2 ppb	<0.0010	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories.		
ORGANIC CHEMICALS						
Acrylamide	0	TT		Added to water during sewage/wastewater treatment.		
Alachlor	0	2 ppb	< 0.0010	Runoff from herbicide used on row crops.		
Atrazine	3 ppb	3 ppb	< 0.0010	Runoff from herbicide used on row crops.		
Benzene	0	5 ppb	< 0.00050	Discharge from factories;Leaching from gas storage tanks and landfills.		
Benzo(a)pyrene [PAHs]	0	200 ppt	< 0.0001	Leaching from linings of water storage tanks and distribution lines.		
Carbon tetrachloride	0	5 ppb	< 0.00050	Discharge from chemical plants and other industrial activities.		
Chlorobenzene	100 ppb	100 ppb	< 0.00050	Discharge from chemical and agricultural chemical factories.		

Dalapon	200 ppb	200 ppb	< 0.00200	Runoff from herbicide used on rights of way.			
Dibromochloromethane	0	200 ppt	0.0038	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples and orchards.			
1,2-Dichlorobenzene-d4	600 ppb	600 ppb	101	Discharge from industrial chemical factories.			
p-Dichlorobenzene	75 ppb	75 ppb	< 0.00050	Discharge from industrial chemical factories.			
1,2-Dichloroethane	0	5 ppb	< 0.00050	Discharge from industrial chemical factories.			
1,1-Dichloroethylene	7 ppb	7 ppb	< 0.00050	Discharge from industrial chemical factories.			
cis-1,2-Dichloroethene	70 ppb	70 ppb	< 0.00050	Discharge from industrial chemical factories.			
trans-1,2-Dichloroethene	100 ppb	100 ppb	< 0.00050	Discharge from industrial chemical factories.			
Dichlorodifluoromethane	0	5 ppb	< 0.00050	Discharge from pharmaceutical and chemical factories.			
1,2-Dichloropropane	0	5 ppb	< 0.00050	Discharge from industrial chemical factories.			
Di (2-ethylhexyl) adipate	400 ppb	400 ppb	< 0.0020	Discharge from chemical factories.			
Di (2-ethylhexyl) phthalates	0	6 ppb	< 0.0020	Discharge from rubber and chemical factories.			
Dioxin [2,3,7,8-TCDD]	0	30 ppq		Emissions from waste incineration and other combustion;Discharge from chemical factories.			
Endothall	100 ppb	100 ppb	< 0.05	Runoff from herbicide use.			
Epichlorohydrin	0	TT		Discharge from industrial chemical factories; Added to water during treatment process;			
				An impurity of some water treatment chemicals.			
Ethylbenzene	700 ppb	700 ppb	< 0.00050	Discharge from petroleum refineries.			
Ethylene dibromide	0	50 ppt		Discharge from petroleum refineries.			
Glyphosate	700 ppb	700 ppb	< 0.25	Runoff from herbicide use.			
HAA5 (haloacetic acids 5)	NA	60 ppb	28.5	By-product of drinking water disinfection.			
Hexachlorobenzene	0	1 ppb	< 0.00050	Discharge from metal refineries and agricultural chemical factories.			
Hexachlorocyclopentadiene	50 ppb	50 ppb	<0.01000	Discharge from chemical factories.			
Lindane	200 ppt	200 ppt		Runoff/leaching from insecticide used on cattle, lumber, gardens.			
Methoxychlor	40 ppb	40 ppb	< 0.00200	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock.			
Oxamyl [Vydate]	200 ppb	200 ppb	< 0.020	Runoff/leaching from insecticide used on apples, potatoes, tomatoes			
Pentachlorophenol	0	1 ppb	<0.0001	Discharge from wood preserving factories.			
Picloram	500 ppb	500 ppb	< 0.0020	Herbicide runoff.			
Polychlorinated biphenyls	0	500 ppt		Runoff from landfills;Discharge of chemical wastes.			
(PCB's)							
Simazine	4 ppb	4 ppb	< 0.0020	Herbicide runoff.			
Styrene	100 ppb	100 ppb	< 0.00050	Discharge from rubber and plastic factories;Leaching from landfills.			
Tetrachloroethane	0	5 ppb	< 0.00050	Leaching from PVC pipes; Discharge from factories and dry cleaners.			
Toluene	1	70-130%	99%	Discharge from petroleum factories.			
TOC (Total Organic Carbon)	NA	TT	1.69	Naturally present in the environment.			
TTHM	NA	80 ppb	65.3	By-product of drinking water chlorination.			
(Total trihalomethanes)							
Toxaphene	0	3 ppb	< 0.00100	Runoff/leaching from insecticide used on cotton and cattle.			
2,4,5-TP (Silvex)	50 ppb	50 ppb	< 0.0001	Residue of banned herbicide.			
1,2,4-Trichlorobenzene	70 ppb	70 ppb	< 0.00050	Discharge from textile finishing factories.			
1,1,1-Trichloroethane	200 ppb	200 ppb	< 0.00050	Discharge from metal degreasing sites and other factories.			
1,1,2-Trichloroethane	3 ppb	5 ppb	< 0.00050	Discharge from industrial chemical factories.			
Trichloroethene	0	5 ppb	< 0.00050	Discharge from metal degreasing sites and other factories.			
Vinyl Chloride	0	2 ppb	< 0.00050	Leaching from PVC piping; Discharge from plastics factories.			
Xvlenes	10	10 ppm	< 0.00050	Discharge from petroleum factories: Discharge from chemical factories.			

Units Description:

NA: Not applicable ND: Not detected NB: Not reported AL: Action Level MCL: Maximum Contaminant Level Goal MCLG: Maximum Contaminant Level Goal MFL: Million Fibers per Liter (mf/l) mg/l: milligrams per liter (mg/l) ppm: parts per million, or miligrams per liter (mg/L) ppp: parts per valifion or picograms per liter (µg/L) ppt: parts per trillion or picograms per liter ppt: parts per trillion or nanograms per liter ppt: parts per trillion or nanograms per liter mrem/yr: millirems per year (a measure of radiaction absorbed by the body) pG/l: picocuries per liter (a measure of radiactivity) TT: Treatment Technique

NTU: Nephelometric Turbidity Units. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

Table of Detected Contaminants

The table below lists all of the regulated drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

			Amount	Major	
Contaminants (units)	MCLG	MCL	Detected	Sources	
BACTERIOLOGICAL					
Total Coliform Bacteria	0	<5%	0	Human and animal fecal waste.	
Turbidity	NA	TT	0.25	Soil runoff.	
E Coli			0	Human and animal fecal waste.	
RADIOLOGICAL					
Beta/photon emitters	0	4		Decay of natural and man-made deposits	
(pCi/l)					
Alpha emitters (pCi/l)	0	15	0.0+/-0.5	Erosion of natural deposits.	
Combined radium (pCi/l)	0	5	0.5+/-0.7	Erosion of natural deposits.	
INORGANIC CHEMICALS			0.029		
Aluminum	6 mmh	6 anh	0.028	Discharzo from notuclarum nofinonicatino notandontaro anomicana la stranica caldar	
Arcania	o ppo	0 pp0	<0.0025	Erosion of natural deposite Ponoff from orchorde Punoff from class and electronic production	
Arbertos (MEL)	7	50 pp0 7	<0.0010	Decey of achietes gement water mains Fracion of natural denosite	
Assestos (MIL)	2	2	0.025	Discharge of drilling wastes and matal references Erosion of natural deposits	
Barulium	2 4 mb	2 ppm	<0.025	Discharge from metal and east huming refineries electrical excesses defense industries	
Cadmium	4 ppo	4 ppb	<0.00010	Corrocion of calvanized nines: Erocion of natural denosits: Discharge from metal refineries:	
Cadmun	5 pp0	5 ppo	~0.0010	Runoff from weste batteries and points	
Chlorine	NΛ	4 ppm	36	Water additive used to control microbes	
Chlorine Dioxide	NA	800 pph	490	Water additive used to control microbes	
Chlorite	NΔ	l ppp	0.69	By-product of drinking water chlorination	
Chromium	100 pph	100 pph	<0.00	Discharge from steel and nuln mills Frosion of natural denosits	
Copper	13	AL = 1.3 ppm	0.17	Corrosion of household nlumbing systems: Frosion of natural deposits: Leaching from	
copper	1.5	THE THE PPIN	0.17	wood denosits	
Cvanide	200 ppb	200 ppb	< 0.010	Discharge from steel/metal factories:Discharge from plastic and fertilizer factories.	
Fluoride	4	4 ppm	0.66	Water additive which promotes strong teeth: Erosion of natural deposits: Discharge from	
		, bbm	0.00	fertilizer and aluminum factories.	
Lead	0	AL=15 ppb	< 0.0010	Corrosion of household plumbing systems: Erosion of natural deposits: Leaching from	
Magnesium		11	10.4		
Manganese	0.05	0.05	< 0.0050		
Mercury	2 ppb	2 ppb	< 0.00020	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills;	
Sodium		160	16.5		
Nitrate	10	10 ppm	0.88	Runoff from fertilizer use;Leaching from septic tank sewage;Erosion of natural deposits.	
Nitrite	1	1 ppm	0.11	Runoff from fertilizer use;Leaching from septic tank sewage;Erosion of natural deposits.	
Total Nitrate and Nitrite	NA	10 ppm	0.4		
Selenium	50 ppb	50 ppb	< 0.0010	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge	
				from mines.	
Sulfate	5.0	500	55.5	Runoff/Leaching from natural deposits; industrial waste.	
Thallium	0.5 ppb	2 ppb	<0.0010	Leaching from ore-processing sites;Discharge from electronics, glass, and drug factories.	
ORGANIC CHEMICALS					
Acrylamide	0	TT		Added to water during sewage/wastewater treatment.	
Alachlor	0	2 ppb	< 0.0010	Runoff from herbicide used on row crops.	
Atrazine	3 ppb	3 ppb	< 0.0010	Runoff from herbicide used on row crops.	
Benzene	0	5 ppb	< 0.00050	Discharge from factories;Leaching from gas storage tanks and landfills.	
Benzo(a)pyrene [PAHs]	0	200 ppt	< 0.0001	Leaching from linings of water storage tanks and distribution lines.	
Bromodichloromethane			0.0038		
Carbon tetrachloride	0	5 ppb	< 0.00050	Discharge from chemical plants and other industrial activities.	
Chlorobenzene	100 ppb	100 ppb	< 0.500	Discharge from chemical and agricultural chemical factories.	
Chloroform			0.0068		
Dalapon	200 ppb	200 ppb	< 0.0020	Runoff from herbicide used on rights of way.	
Dibromochloropropane	0	200 ppt		Runott/leaching from soil fumigant used on soybeans, cotton, pineapples and orchards.	
1,2-Dichlorobenzene-d4	600 ppb	600 ppb	101	Discharge from industrial chemical factories.	
p-Dichlorobenzene	75 ppb	75 ppb		Discharge from industrial chemical factories.	

1,2-Dichloroethane	0	5 ppb	< 0.00050	Discharge from industrial chemical factories.			
1,1-Dichloroethylene	7 ppb	7 ppb	< 0.00050	Discharge from industrial chemical factories.			
cis-1,2-Dichloroethene	70 ppb	70 ppb	< 0.00050	Discharge from industrial chemical factories.			
trans-1,2-Dichloroethene	100 ppb	100 ppb	< 0.00050	Discharge from industrial chemical factories.			
Dibromochloromethane	0.500 ppb		0.0038	Discharge from pharmaceutical and chemical factories.			
1,2-Dichloropropane	0	5 ppb	< 0.00050	Discharge from industrial chemical factories.			
Di (2-ethylhexyl) adipate	400 ppb	400 ppb	< 0.0020	Discharge from chemical factories.			
Di (2-ethylhexyl) phthalates	0	6 ppb	< 0.0020	Discharge from rubber and chemical factories.			
Dioxin [2,3,7,8-TCDD]	0	30 ppq		Emissions from waste incineration and other combustion;Discharge from chemical factories.			
Endothall	100 ppb	100 ppb	< 0.05	Runoff from herbicide use.			
Epichlorohydrin	0	TT		Discharge from industrial chemical factories; Added to water during treatment process;			
				An impurity of some water treatment chemicals.			
Ethylbenzene	700 ppb	700 ppb	< 0.00050	Discharge from petroleum refineries.			
Ethylene dibromide	0	50 ppt		Discharge from petroleum refineries.			
Glyphosate	700 ppb	700 ppb	< 0.25	Runoff from herbicide use.			
HAA5 (haloacetic acids 5)	NA	60 ppb	28.5	By-product of drinking water disinfection.			
Hexachlorobenzene	0	1 ppb	< 0.00050	Discharge from metal refineries and agricultural chemical factories.			
Hexachlorocyclopentadiene	50 ppb	50 ppb	<0.01000	Discharge from chemical factories.			
Lindane	200 ppt	200 ppt		Runoff/leaching from insecticide used on cattle, lumber, gardens.			
Methoxychlor	40 ppb	40 ppb	< 0.00200	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock.			
Oxamyl [Vydate]	200 ppb	200 ppb	< 0.020	Runoff/leaching from insecticide used on apples, potatoes, tomatoes			
Pentachlorophenol	0	1 ppb	<0.0001	Discharge from wood preserving factories.			
Picloram	500 ppb	500 ppb	<0.0020	Herbicide runoff.			
Polychlorinated biphenyls	0	500 ppt		Runoff from landfills;Discharge of chemical wastes.			
Simazine	4 ppb	4 ppb	< 0.0020	Herbicide runoff.			
Styrene	100 ppb	100 ppb	< 0.00050	Discharge from rubber and plastic factories;Leaching from landfills.			
Tetrachloroethane	0	5 ppb	< 0.00050	Leaching from PVC pipes; Discharge from factories and dry cleaners.			
Toluene	1	70-130%	< 0.00050	Discharge from petroleum factories.			
TOC (Total Organic Carbon)	NA	TT	1.69	Naturally present in the environment.			
TTHM(Total Trihalomethane)	0	80 ppb	65.3	By-product of drinking water chlorination.			
Toxaphene	0	3 ppb	< 0.00100	Runoff/leaching from insecticide used on cotton and cattle.			
2,4-D	0.07	0.07	0.00048	Residue of banned herbicide.			
1,2,4-Trichlorobenzene	70 ppb	70 ppb	< 0.00050	Discharge from textile finishing factories.			
1,1,1-Trichloroethane	200 ppb	200 ppb	< 0.00050	Discharge from metal degreasing sites and other factories.			
1,1,2-Trichloroethane	3 ppb	5 ppb	< 0.00050	Discharge from industrial chemical factories.			
Trichloroethylene	0	5 ppb	< 0.00050	Discharge from metal degreasing sites and other factories.			
Vinyl Chloride	0	2 ppb	< 0.00050	Leaching from PVC piping;Discharge from plastics factories.			
Xylenes	10	10 ppm	< 0.00050	Discharge from petroleum factories; Discharge from chemical factories.			

Units Description:

NA: Not applicable ND: Not detected NR: Not reported AL: Action Level MCL: Maximum Contaminant Level MCLG: Maximum Contaminant Level Goal MFL: Million Fibers per Liter (mf/l) mg/l: milligrams per liter (mg/l) ppm: parts per million, or miligrams per liter (mg/L) ppb: parts per billion, or micrograms per liter (μg/L) ppt: parts per trillion or nanograms per liter pt: parts per trillion or nanograms per liter pCi/l: picocuries per liter (a measure of radioactivity) TT: Treatment Technique

NTU: Nephelometric Turbidity Units. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

Water Quality Data Table

The table below lists all of the regulated drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

			Your		Range	Sample		
Contaminants (units)	MCLG	MCL	Water	Low	High	Date	Violation	Typical Source
Disinfectants & Disinfection	n By-Products							
Haloacetic Acids (HAA5)	NA	60	28	11	68	2024	No	By-product of drinking water
(ppb)								chlorination
Total Organic Carbon	NA	NA	1.82	1.3	2.4	2024	No	Naturally present in the environment
(ppm)								
Copper (ppm)	AL>1.3	AL>1.3	0.17	<.050	0.22	2024	No	Corrosion of household plumbing
								systems; erosion of natural deposits.
								Leaching from wood preservatives.
Lead (ppm)	AL>0.015	AL>0.015	< 0.005	< 0.005	< 0.005	2024	No	
Inorganic Contaminants			0.020	214	274	2024		
Aluminum	2 000	2 000	0.028	NA	NA	2024	No	Frankright and the sector
Barium	2.000	2.000	0.025	NA	NA	2024	No	Erosion of natural deposits.
Calcium, as Ca	0.500	NT A	19.50	NA	NA	2024	NO	
Chlorido, as Cl	NA 250	NA 250	9.50	NA NA	NA	2024	No	
Eluorido (nom)	230	230	14.10	NA NA	NA	2024	No	Enorion of notional domesity Water
Fluoride (ppili)	4	4	0.00	NA	NA	2024	NO	additive which promotes strong
								teeth: Discharge from fertilizer and
								aluminum factories
Magnesium			10.4	NA	NA	2024	No	
Magnooram			10.1	1111		2021	No	
Nitrate (ppm)	10	10	0.4	NA	NA	2024	No	Runoff from fertilizer use: Leaching
(ppm)	10	10	011			2021	110	from septic tanks, sewage: Erosion
								of natural deposits.
Sodium (ppm)	MNR	MNR	16.5	NA	NA	2024	No	
Zinc (ppm)	5	5	0.5	NA	NA	2024	No	
Microbiological Contamina	nts							
Turbidity (Conventional or	NA	NA	0.25	NA	NA	2024	No	Soil runoff
Direct Filtration) (NTU								
(in 95% of								
Unregulated Contaminants								
Bromodichloromethane	NA	NA	0.0038	NA	NA	2024	No	
(ppb)								
Chloroform (ppb)	NA	NA	0.0068	NA	NA	2024	No	
Crypto/Giardia	NA	NA	0	0	0	2016	No	
Sulfate (ppm)	NA	NA	55.5	NA	NA	2024	No	Runoff/leaching from natural deposits:
2,4-D Malatila Organia Contomin	NA	NA	0.00048	NA	NA	2024	No	
Volatile Organic Contamina		80	46.2	12	150	2024	N.	De ma last ef deinking meter
Tribalamathanaal (nnh)	INA	80	40.3	15	150	2024	NO	By-product of drinking water
Radiological								
Alpha emitters (pCi/l)	0	15	0.0+/-0.5	NA	NA	2017	No	Decay of natural and man-made denosits
Combined radium (pCi/l)	0	5	0.5+/-0.7	11/1	11/1	2017	110	Decay of humana man-made deposits
Gross Alpha (pCi/L)	NA	NA	1,19+1.30			2021	No	
Radium-228 (pCi/L)	NA	NA	0.622+0.421			2021	No	
(post)								

Units Description:

NA: Not applicable

ND: Not detected

NR: Not reported

AL: Action Level

MCL: Maximum Contaminant Level

MCLG: Maximum Contaminant Level Goal

MNR: Monitoring not required, but recommended.

ppm: parts per million, or milligrams per liter (mg/L)

ppb: parts per billion, or micrograms per liter ($\mu g/L$)

NTU: Nephelometric Turbidity Units. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.